The meteorology of negative cloud-to-ground lightning strokes with large charge moment changes: Implications for negative sprites

نویسندگان

  • Timothy J. Lang
  • Steven A. Cummer
  • Steven A. Rutledge
  • Walter A. Lyons
چکیده

[1] This study examined the meteorological characteristics of precipitation systems that produced 38 “sprite-class” negative cloud-to-ground (CG) strokes (i.e., peak currents in excess of 100 kA and charge moment changes in excess of 800C km) as well as those that produced three confirmed negative sprites on 23 different days during 2009–2011. Within 15 km of the negative sprite-parent/class stroke, the median characteristics for these systems were to produce negative CGs as 69.2% of all CGs, and for the 30 dBZ radar reflectivity contour to reach on average 14.2 km above mean sea level (MSL), during a 25min period encompassing the occurrence of the stroke. The median contiguous area of 30 dBZ composite radar echo (i.e., maximum value in the vertical column) for these systems was 6.73 × 10 km. All but three of the discharges occurred in intense multicellular convection, with 30 dBZ exceeding 10 km MSL in altitude, while the others occurred in the stratiform regions of mesoscale convective systems. All but six of the systems produced greater than 50% negative CG lightning, though flash rates tended to be low near the stroke (1–2min 1 on average). The results suggest that negative sprite-parent/class lightning typically occurs in precipitation systems of similar size and intensity as those that produce positive sprites, but not necessarily the same systems, and the negative lightning normally strikes ground in the convection rather than the stratiform precipitation. However, upper-level positive charge in the convection may play an important role in sprite-class/parent lightning of either polarity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implications of lightning charge moment changes for sprite initiation

[1] We report impulse lightning charge moment changes (defined as occurring in the first 2 ms after return stroke onset) in all cloud-to-ground lightning strokes detected by the National Lightning Detection Network in three storms during which above-thunderstorm sprite video was recorded. After analyzing strokes that both did and did not produce sprites and carefully accounting for lightning-sp...

متن کامل

Charge transfer and in-cloud structure of large-charge-moment positive lightning strokes in a mesoscale convective system

[1] Lightning observations in the very high frequency band and measurements of ultra low frequency magnetic fields are analyzed to investigate the charge transfer and in-cloud structure of eight positive cloud-to-ground (+CG) strokes in a mesoscale convective system. Although no high altitude images were recorded, these strokes contained large charge moment changes (1500–3200 C km) capable of p...

متن کامل

Lightning morphology and impulse charge moment change of high peak current negative strokes

[1] We have analyzed very high frequency lightning mapping observations and remote magnetic field measurements to investigate connections between lightning morphology and impulse charge moment change (iCMC) of negative cloud-to-ground (CG) strokes with high estimated peak currents. Four lightning morphologies are identified for a total of 2126 strokes within optimum detection range of the North...

متن کامل

Fractal structure of sprites

A large scale model of sprites based on a phenomenological probabilistic approach to modeling of streamer corona discharges is developed. The model utilizes the experimentally documented macroscopic properties of positive and negative streamer corona in air and allows a realistic determination of the propagation of multiple breakdown branches in a self-consistent electric field. The model resul...

متن کامل

Charge moment change and lightning-driven electric fields associated with negative sprites and halos

[1] Sprites are structured high altitude optical emissions produced by lightning-driven electric fields. Both strong positive and negative cloud to ground flashes (CGs) are capable of initiating sprites. However, reported sprites are almost exclusively produced by +CGs. The very limited number of negative polarity sprites makes it difficult to reveal their morphologies and mechanisms. Since 200...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013